Grazing

  1. United Nations Convention to Combat Desertification (UNCCD) (2017) The Global Land Outlook, first edition. Bonn, Germany, https://knowledge.unccd.int/sites/default/files/2018-06/GLO%20English_Full_Report_rev1.pdf.

  2. Harchaoui, S. & Chatzimpiros, P. (2018) Can Agriculture Balance Its Energy Consumption and Continue to Produce Food? A Framework for Assessing Energy Neutrality Applied to French Agriculture. Sustainability, vol. 10, no. 12, p. 1-14, https://doi.org/10.3390/su10124624

  3. Wilson, C.H., Strickland, M.S., Hutchings, J.A., Bianchi, T.S. & Flory, S.L. (2018) Grazing enhances belowground carbon allocation, microbial biomass, and soil carbon in a subtropical grassland. Global Change Biology, vol. 24, no. 7, p. 2997-3009. https://doi.org/10.1111/gcb.14070

  4. Ogilvy, S., Gardner, M., Mallawaarachichi, T., Schirmer, J., Brown, K. & Heagney, E. (2018) Report: Graziers with better profitability, biodiversity and wellbeing. Canberra Australia

  5. Zhou, G., Zhou, L. & Zhou, X. (2020). Effects of Grazing Intensity on Belowground Carbon and Nitrogen Cycling. In Grasses and Grassland Aspects, Valentin Missiako Kindomihou, IntechOpen, https://www.intechopen.com/books/grasses-and-grassland-aspects/effects-of-grazing-intensity-on-belowground-carbon-and-nitrogen-cycling

  6. McDonald, S.E., Lawrence, R., Kendall, L. & Rader, R. (2019a) Ecological, biophysical and production effects of incorporating rest into grazing regimes: A global meta‐analysis. Journal of Applied Ecology, vol. 56, no. 12, p. 2723-2731, https://doi.org/10.1111/1365-2664.13496

  7. McDonald, S.E., Reid, N., Smith, R., Waters, C.M., Hunter, J. & Rader, R. (2019b) Rotational grazing management achieves similar plant diversity outcomes to areas managed for conservation in a semi-arid rangeland. The Rangeland Journal, vol. 41, no. 2, p. 135-145, https://doi.org/10.1071/RJ18090

  8. Orgill, S.E., Condon, J.R., Conyers, M.K., Morris, S.G., Alcock, D.J., Murphy, B.W. & Greene, R.S.B. (2018) Removing grazing pressure from a native pasture decreases soil organic carbon in southern New South Wales, Australia. Land Degradation & Development, vol. 29, no. 2, p. 274-283, https://doi.org/10.1002/ldr.2560

  9. Sollenberger, L.E., Kohmann, M.M., Dubeux, J.C. & Silveira, M.L. ( 2019) Grassland management affects delivery of regulating and supporting ecosystem services. Crop Science, vol. 59, no. 2, p. 441-459, https://doi.org/10.2135/cropsci2018.09.0594

  10. Sato, C.F., Strong, C.L., Holliday, P., Florance, D., Pierson, J. & Lindenmayer, D.B. (2019) Environmental and grazing management drivers of soil condition. Agriculture, Ecosystems & Environment, vol. 276, p. 1-7, https://doi.org/10.1016/j.agee.2019.02.003

  11. Stanley, P.L., Rowntree, J.E., Beede, D.K., DeLonge, M.S. & Hamm, M.W. (2018) Impacts of soil carbon sequestration on life cycle greenhouse gas emissions in Midwestern USA beef finishing systems. Agricultural Systems, vol. 162, p. 249-258, https://doi.org/10.1016/j.agsy.2018.02.003

  12. Thomas, D.T., Moore, A.D., Bell, L.W. & Webb, N.P. (2018) Ground cover, erosion risk and production implications of targeted management practices in Australian mixed farming systems: Lessons from the Grain and Graze program. Agricultural Systems, vol. 162, p. 123-135, https://doi.org/10.1016/j.agsy.2018.02.001

  13. Fischer, J., Stott, J., Zerger, A., Warren, G., Sherren, K. & Forrester, R.I. (2009) Reversing a tree regeneration crisis in an endangered ecoregion. Proceedings of the National Academy of Sciences, vol. 106, no. 25, p. 10386-10391, https://doi.org/10.1073/pnas.0900110106

  14. Ghimire, R., Thapa, V.R., Cano, A. & Acosta-Martinez, V. (2019) Soil organic matter and microbial community responses to semiarid croplands and grasslands management. Applied Soil Ecology, vol. 141, pp.30-37, https://doi.org/10.1016/j.apsoil.2019.05.002

  15. Teixeira, R.F. & Domingos, T. (2019) Current Practice and Future Perspectives for Livestock Production and Industrial Ecology. Sustainability, vol. 11, no. 15, https://doi.org/10.3390/su11154210

  16. Zwick, S. (2018) ‘Ruminations: Methane math and context’, Regenetarianism (Formely L.A. Chefs Column), https://lachefnet.wordpress.com/2018/05/04/ruminations-methane-math-and-context/

  17. Hammer, T.J., Fierer, N., Hardwick, B., Simojoki, A., Slade, E., Taponen, J., Viljanen, H. & Roslin, T. (2016) Treating cattle with antibiotics affects greenhouse gas emissions, and microbiota in dung and dung beetles. Proceedings of the Royal Society B: Biological Sciences, vol. 283, no. 1831, p. 1-7, http://dx.doi.org/10.1098/rspb.2016.0150

  18. Chang, J., Peng, S., Ciais, P., Saunois, M., Dangal, S.R., Herrero, M., Havlík, P., Tian, H. & Bousquet, P. (2019) Revisiting enteric methane emissions from domestic ruminants and their δ 13 C CH4 source signature. Nature Communications, vol. 10, no. 1, p. 1-14, https://doi.org/10.1038/s41467-019-11066-3

  19. Pennsylvania State University (2019) ‘Indigenous hunters have positive impacts on food webs in desert Australia’, Phys.Org, https://phys.org/news/2019-02-indigenous-hunters-positive-impacts-food.html

  20. Machmuller, M.B., Kramer, M.G., Cyle, T.K., Hill, N., Hancock, D. & Thompson, A. (2015) Emerging land use practices rapidly increase soil organic matter. Nature Communications, vol. 6, no. 1, p. 1-5, https://doi.org/10.1038/ncomms7995

  21. Colley, T.A., Olsen, S.I., Birkved, M. & Hauschild, M.Z. (2020) Delta Life Cycle Assessment of Regenerative Agriculture in a Sheep Farming System. Integrated Environmental Assessment and Management, vol. 16, no. 2, p. 282-290, https://doi.org/10.1002/ieam.4238

Last updated