Soil carbon

Format used: Authors (Year of publication) Title of article, Name of Publication, Volume number, Issue details, Page number(s), DOI.

  1. Kallenbach, C.M., Frey, S.D. & Grandy, A.S. (2016) Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nature Communications, vol. 7, no. 13630, https://doi.org/10.1038/ncomms13630

  2. Liang, C., Amelung, W., Lehman, J. & Kästner, M. (2019) Quantitative assessment of microbial necromass contribution to soil organic matter, Global Change Biology, vol. 25, no. 11,

    https://doi.org/10.1111/gcb.14781

  3. Jackson, R.B., Latham, K., Crow, S.E., Hugelius, G., Kramer, M.G. & Piñeiro, G. (2017) The Ecology of Soil Carbon: Pools, Vulnerabilities, and Biotic and Abiotic Controls, Annual Review of Ecology, Evolution, and Systematics, vol. 48, p. 419-445 https://doi.org/10.1146/annurev-ecolsys-112414-054234

  4. Trivedi P., Delgado‐Baquerizo M., Jeffries T.C., Trivedi C., Anderson I.C., Lai K., McNee M., Flower K., Pal Singh B., Minkey D., Singh B.K. (2017) Soil aggregation and associated microbial communities modify the impact of agricultural management on carbon content. Environmental Microbiology, vol. 19, no. 8, p. 3070-86 https://doi.org/10.1111/1462-2920.13779

  5. Carter, M.R., & Gregorich, E.G. (2010) Carbon and nitrogen storage by deep-rooted tall fescue (Lolium arundinaceum) in the surface and subsurface soil of a fine sandy loam in eastern Canada. Agriculture, Ecosystems & Environment, vol. 136, no. 1-2, p. 125-132, https://doi.org/10.1016/j.agee.2009.12.005

  6. Sokol, N.W., Sanderman, J. & Bradford, M.A. (2019) Pathways of mineral‐associated soil organic matter formation: Integrating the role of plant carbon source, chemistry, and point of entry. Global Change Biology, vol. 25, no. 1, p. 12-24, https://doi.org/10.1111/gcb.14482

  7. Gross, C.D., & Harrison, R.B. (2019) The case for digging deeper: soil organic carbon storage, dynamics, and controls in our changing world. Soil Systems, vol. 3, no. 2, p. 28, https://doi.org/10.3390/soilsystems3020028

  8. Ota, M., Nagai, H., & Koarashi, J. (2013) Root and dissolved organic carbon controls on subsurface soil carbon dynamics: A model approach. Journal of Geophysical Research: Biogeosciences, vol. 118, no. 4, p. 1646-1659, https://doi.org/10.1002/2013JG002379

  9. De Stefano, A., & Jacobson, M.G. (2018) Soil carbon sequestration in agroforestry systems: a meta-analysis. Agroforestry systems, vol. 92, no. 2, p. 285-299, https://doi.org/10.1007/s10457-017-0147-9

  10. Lange, M., Eisenhauer, N., Sierra, C.A., Bessler, H., Engels, C., Griffiths, R.I., Mellado-Vázquez, P.G., Malik, A.A., Roy, J., Scheu, S. & Steinbeiss, S. (2015) Plant diversity increases soil microbial activity and soil carbon storage. Nature Communications, vol. 6, no. 1, p.1-8, https://doi.org/10.1038/ncomms7707

  11. Chen, X., Chen, H.Y., Chen, C., Ma, Z., Searle, E.B., Yu, Z., & Huang, Z. (2020) Effects of plant diversity on soil carbon in diverse ecosystems: a global meta‐analysis. Biological Reviews, vol. 95, no. 1, p. 167-183, https://doi.org/10.1111/brv.12554

  12. Kell, D.B. (2011) Breeding crop plants with deep roots: their role in sustainable carbon, nutrient and water sequestration. Annals of Botany, vol. 108, no. 3, p. 407-418, https://doi.org/10.1093/aob/mcr175

  13. Jones, D.L., Cooledge, E.C., Hoyle, F.C., Griffiths, R.I. and Murphy, D.V. (2019) pH and exchangeable aluminum are major regulators of microbial energy flow and carbon use efficiency in soil microbial communities. Soil Biology and Biochemistry, vol. 138, p.107584, https://doi.org/10.1016/j.soilbio.2019.107584

  14. Sobral, M., Silvius, K.M., Overman, H., Oliveira, L.F., Raab, T.K., & Fragoso, J.M. (2017) Mammal diversity influences the carbon cycle through trophic interactions in the Amazon. Nature Ecology & Evolution, vol. 1, no. 11, p. 1670-1676, https://doi.org/10.1038/s41559-017-0334-0

  15. Letnic, M., & Ripple, W.J. (2017) Large‐scale responses of herbivore prey to canid predators and primary productivity. Global Ecology and Biogeography, vol. 26, no. 8, p 860-866, https://doi.org/10.1111/geb.12593

  16. Yu, H., Zha, T., Zhang, X., & Ma, L. (2019) Vertical distribution and influencing factors of soil organic carbon in the Loess Plateau, China. Science of the Total Environment, vol. 693, https://doi.org/10.1016/j.scitotenv.2019.133632

  17. Badole, S., Datta, A., Chaitanya, A.K., Majumder, S.P., & Mandal, B. (2020) Soil Carbon Dynamics Under Different Land-Use and Management Systems. In Carbon Management in Tropical and Sub-Tropical Terrestrial Systems (pp. 103-121). Springer, Singapore, https://doi.org/10.1007/978-981-13-9628-1_7

  18. Rabbi, S.M.F., Tighe, M., Delgado-Baquerizo, M., Cowie, A., Robertson, F., Dalal, R., Page, K., Crawford, D., Wilson, B.R., Schwenke, G. & Mcleod, M. (2015) Climate and soil properties limit the positive effects of land use reversion on carbon storage in Eastern Australia. Scientific Reports, vol. 5, p.17866, https://doi.org/10.1038/srep17866

  19. Chan, K.Y., Conyers, M.K., Li, G.D., Helyar, K.R., Poile, G., Oates, A. & Barchia, I.M. (2011) Soil carbon dynamics under different cropping and pasture management in temperate Australia: Results of three long-term experiments. Soil Research, vol. 49, no. 4, p. 320-328, https://doi.org/10.1071/SR10185

Last updated