🖊️
Regenerative Agriculture Literature Review
  • Agro-ecology & Regenerative Agriculture Knowledge Commons (with a focus on Climate Change)
  • Introduction
    • Purpose of this document and how to contribute
    • Why regenerative agriculture?
    • What is Regenerative Agriculture?
  • Part 1: Physical Science Underpinning Regenerative Agriculture
  • Physical cycles and interactions
    • Carbon sequestration
      • Soil carbon
      • Vegetation and carbon
    • Water cycle
    • Other nutrient cycles
      • Role of Fungi
      • Mineral nitrogen use and impacts
  • Biodiversity
  • Production Systems
  • Grazing
  • Cropping
  • Trees
  • Pigs and poultry
  • Measurement of impacts relative to industrial agriculture
  • Land degradation and productivity
  • Human health
  • Challenges of measuring complexity
  • Part 2: Social sciences and regenerative agriculture
    • Identifying, mapping and accounting regenerative agriculture
    • Barriers to adoption of regenerative agriculture
    • Enablers for adoption of regenerative agriculture
    • Pathways to Regenerative Agriculture
  • References
    • Introduction
    • Soil carbon
    • Vegetation and carbon
    • Water Cycle
    • Role of Fungi
    • Mineral nitrogen use and impacts
    • Grazing
    • Cropping
    • Trees
    • Pigs and poultry
    • Land degradation and productivity
    • Human health
    • Measuring complexity
    • Identifying, mapping and accounting
    • Barriers and Enablers and Pathways
Powered by GitBook
On this page

Was this helpful?

  1. References

Vegetation and carbon

PreviousSoil carbonNextWater Cycle

Last updated 4 years ago

Was this helpful?

  1. Watson, J.E., Evans, T., Venter, O., Williams, B., Tulloch, A., Stewart, C., Thompson, I., Ray, J.C., Murray, K., Salazar, A. & McAlpine, C. (2018) The exceptional value of intact forest ecosystems. Nature Ecology & Evolution, vol. 2, no. 4, p. 599-610,

  2. Naudts, K., Chen, Y., McGrath, M.J., Ryder, J., Valade, A., Otto, J. & Luyssaert, S. (2016) Europe’s forest management did not mitigate climate warming. Science, vol. 351, no, 6273, p. 597-600,

  3. Stephenson, N.L., Das, A.J., Condit, R., Russo, S.E., Baker, P.J., Beckman, N.G., Coomes, D.A., Lines, E.R., Morris, W.K., Rüger, N. & Alvarez, E. (2014) Rate of tree carbon accumulation increases continuously with tree size. Nature, vol. 507, no. 7490, p .90-93,

  4. Steidinger, B.S., Crowther, T.W., Liang, J., Van Nuland, M.E., Werner, G.D., Reich, P.B., Nabuurs, G.J., de-Miguel, S., Zhou, M., Picard, N. & Hérault, B. (2019) Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature, vol. 569, no. 7756, p. 404-408,

  5. Bennett, J.A., Maherali, H., Reinhart, K.O., Lekberg, Y., Hart, M.M. & Klironomos, J. (2017) Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science, vol. 355, no. 6321, p. 181-184,

  6. Sterkenburg, E., Clemmensen, K.E., Lindahl, B.D. & Dahlberg, A. (2019) The significance of retention trees for survival of ectomycorrhizal fungi in clear‐cut Scots pine forests. Journal of Applied Ecology, vol. 56, no. 6, p. 1367-1378,

  7. Averill, C., Turner, B.L. & Finzi, A.C. (2014) Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature, vol. 505, no. 7484, p. 543-545,

  8. Soudzilovskaia, N.A., van Bodegom, P.M., Terrer, C., van’t Zelfde, M., McCallum, I., McCormack, M.L., Fisher, J.B., Brundrett, M.C., de Sá, N.C. & Tedersoo, L. (2019) Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nature Communications, vol. 10, no. 1, p. 1-10,

https://doi.org/10.1038/s41559-018-0490-x
https://doi.org/10.1126/science.aad7270
https://doi.org/10.1038/nature12914
https://doi.org/10.1038/s41586-019-1128-0
https://doi.org/10.1126/science.aai821
https://doi.org/10.1111/1365-2664.13363
https://doi.org/10.1038/nature12901
https://doi.org/10.1038/s41467-019-13019-2