Mineral nitrogen use and impacts
  1. 1.
    Jach-Smith, L.C., & Jackson, R.D. (2018) N addition undermines N supplied by arbuscular mycorrhizal fungi to native perennial grasses. Soil Biology and Biochemistry, vol. 116, p. 148-157, https://doi.org/10.1016/j.soilbio.2017.10.009​
  2. 2.
    Chen, X., Hao, B., Jing, X., He, J.S., Ma, W., & Zhu, B. (2019) Minor responses of soil microbial biomass, community structure and enzyme activities to nitrogen and phosphorus addition in three grassland ecosystems. Plant and Soil, vol. 444, no. 1-2, p. 21-37, https://doi.org/10.1007/s11104-019-04250-3​
  3. 3.
    Steidinger, B.S., Crowther, T.W., Liang, J., Van Nuland, M.E., Werner, G.D., Reich, P.B., Nabuurs, G.J., de-Miguel, S., Zhou, M., Picard, N. & Hérault, B. (2019) Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature, vol. 569, no. 7756, p.404-408, https://doi.org/10.1038/s41586-019-1128-0​
  4. 4.
    Geisseler, D., Lazicki, P.A., & Scow, K.M. (2016) Mineral nitrogen input decreases microbial biomass in soils under grasslands but not annual crops. Applied Soil Ecology, vol. 106, p. 1-10, https://doi.org/10.1016/j.apsoil.2016.04.015​
  5. 5.
    Leake, J., Johnson, D., Donnelly, D., Muckle, G., Boddy, L., & Read, D. (2004) Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Canadian Journal of Botany, vol. 82, no. 8, p. 1016-1045, https://doi.org/10.1139/b04-060​
  6. 6.
    Luo, G., Li, L., Friman, V.P., Guo, J., Guo, S., Shen, Q. and Ling, N., 2018. Organic amendments increase crop yields by improving microbe-mediated soil functioning of agroecosystems: A meta-analysis. Soil Biology and Biochemistry, vol. 124, p.105-115, https://doi.org/10.1016/j.soilbio.2018.06.002​
  7. 7.
    Mulvaney, R.L., Khan, S.A., & Ellsworth, T.R. (2009) Synthetic nitrogen fertilizers deplete soil nitrogen: a global dilemma for sustainable cereal production. Journal of Environmental Quality, vol. 38, no. 6, p. 2295-2314, https://doi.org/10.2134/jeq2008.0527​
  8. 8.
    Hedayati, M., Brock, P.M., Nachimuthu, G., & Schwenke, G. (2019) Farm-level strategies to reduce the life cycle greenhouse gas emissions of cotton production: An Australian perspective. Journal of cleaner production, vol. 212, p. 974-985, https://doi.org/10.1016/j.jclepro.2018.11.190​
  9. 9.
    Gao, B., Huang, T., Ju, X., Gu, B., Huang, W., Xu, L., Rees, R.M., Powlson, D.S., Smith, P. & Cui, S. (2018) Chinese cropping systems are a net source of greenhouse gases despite soil carbon sequestration. Global Change Biology, vol. 24, no. 12, p.5590-5606, https://doi.org/10.1111/gcb.14425​
  10. 10.
    Elsoragaby, S., Yahya, A., Mahadi, M.R., Nawi, N.M., & Mairghany, M. (2019) Energy utilization in major crop cultivation. Energy, vol. 173, p. 1285-1303, https://doi.org/10.1016/j.energy.2019.01.142​
  11. 11.
    Aguilera, E., Guzmán Casado, G., Infante Amate, J., Soto Fernández, D., García Ruiz, R., Herrera, A., Villa, I., Torremocha, E., Carranza, G. & González de Molina, M. (2015) Embodied energy in agricultural inputs: Incorporating a historical perspective, DT-SEHA http://hdl.handle.net/10234/141278​
  12. 12.
    Le Noë, J., Billen, J. & Garnier, J. (2019) Carbon dioxide emission and soil sequestration for the French agro-food system: present and prospective scenarios. Frontiers in Sustainable Food Systems, vol. 3, https://doi.org/10.3389/fsufs.2019.00019​
  13. 13.
    Zhou, X., Passow, F.H., Rudek, J., von Fisher, J.C., Hamburg, S.P. & Albertson, J.D. (2019) Estimation of methane emissions from the US ammonia fertilizer industry using a mobile sensing approach. Elementa Science of the Anthropocene, vol. 7, no. 1, http://doi.org/10.1525/elementa.358​
  14. 14.
    Billen, G., Le Noë, J., & Garnier, J. (2018). Two contrasted future scenarios for the French agro-food system. Science of the Total Environment, vol. 637, p. 695-705, https://doi.org/10.1016/j.scitotenv.2018.05.043​
  15. 15.
    Dorin, B. & Joly, P.B., 2019. Modelling world agriculture as a learning machine? From mainstream models to Agribiom 1.0. Land Use Policy, in press, https://doi.org/10.1016/j.landusepol.2018.09.028​
  16. 16.
    Leip, A., Ledgard, S., Uwizeye, A., Palhares, J.C., Aller, M.F., Amon, B., Binder, M., Cordovil, C.M., De Camillis, C., Dong, H., Fusi, A., Helin, J., Hörtenhuber, S., Hristov, A.N., Koelsch, R., Liu, C., Masso, C., Nkongolo, N.V., Patra, A.K., Redding, M.R., Rufino, M.C., Sakrabni, R., Thoma, G., Vertes, F. & Wang, Y. (2019) The value of manure-Manure as co-product in life cycle assessment. Journal of Environmental Management, vol. 241, p.293-304, https://doi.org/10.1016/j.jenvman.2019.03.059​
Copy link