Mineral nitrogen use and impacts

  1. 1.
    Jach-Smith, L.C., & Jackson, R.D. (2018) N addition undermines N supplied by arbuscular mycorrhizal fungi to native perennial grasses. Soil Biology and Biochemistry, vol. 116, p. 148-157, https://doi.org/10.1016/j.soilbio.2017.10.009
  2. 2.
    Chen, X., Hao, B., Jing, X., He, J.S., Ma, W., & Zhu, B. (2019) Minor responses of soil microbial biomass, community structure and enzyme activities to nitrogen and phosphorus addition in three grassland ecosystems. Plant and Soil, vol. 444, no. 1-2, p. 21-37, https://doi.org/10.1007/s11104-019-04250-3
  3. 3.
    Steidinger, B.S., Crowther, T.W., Liang, J., Van Nuland, M.E., Werner, G.D., Reich, P.B., Nabuurs, G.J., de-Miguel, S., Zhou, M., Picard, N. & Hérault, B. (2019) Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature, vol. 569, no. 7756, p.404-408, https://doi.org/10.1038/s41586-019-1128-0
  4. 4.
    Geisseler, D., Lazicki, P.A., & Scow, K.M. (2016) Mineral nitrogen input decreases microbial biomass in soils under grasslands but not annual crops. Applied Soil Ecology, vol. 106, p. 1-10, https://doi.org/10.1016/j.apsoil.2016.04.015
  5. 5.
    Leake, J., Johnson, D., Donnelly, D., Muckle, G., Boddy, L., & Read, D. (2004) Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Canadian Journal of Botany, vol. 82, no. 8, p. 1016-1045, https://doi.org/10.1139/b04-060
  6. 6.
    Luo, G., Li, L., Friman, V.P., Guo, J., Guo, S., Shen, Q. and Ling, N., 2018. Organic amendments increase crop yields by improving microbe-mediated soil functioning of agroecosystems: A meta-analysis. Soil Biology and Biochemistry, vol. 124, p.105-115, https://doi.org/10.1016/j.soilbio.2018.06.002
  7. 7.
    Mulvaney, R.L., Khan, S.A., & Ellsworth, T.R. (2009) Synthetic nitrogen fertilizers deplete soil nitrogen: a global dilemma for sustainable cereal production. Journal of Environmental Quality, vol. 38, no. 6, p. 2295-2314, https://doi.org/10.2134/jeq2008.0527
  8. 8.
    Hedayati, M., Brock, P.M., Nachimuthu, G., & Schwenke, G. (2019) Farm-level strategies to reduce the life cycle greenhouse gas emissions of cotton production: An Australian perspective. Journal of cleaner production, vol. 212, p. 974-985, https://doi.org/10.1016/j.jclepro.2018.11.190
  9. 9.
    Gao, B., Huang, T., Ju, X., Gu, B., Huang, W., Xu, L., Rees, R.M., Powlson, D.S., Smith, P. & Cui, S. (2018) Chinese cropping systems are a net source of greenhouse gases despite soil carbon sequestration. Global Change Biology, vol. 24, no. 12, p.5590-5606, https://doi.org/10.1111/gcb.14425
  10. 10.
    Elsoragaby, S., Yahya, A., Mahadi, M.R., Nawi, N.M., & Mairghany, M. (2019) Energy utilization in major crop cultivation. Energy, vol. 173, p. 1285-1303, https://doi.org/10.1016/j.energy.2019.01.142
  11. 11.
    Aguilera, E., Guzmán Casado, G., Infante Amate, J., Soto Fernández, D., García Ruiz, R., Herrera, A., Villa, I., Torremocha, E., Carranza, G. & González de Molina, M. (2015) Embodied energy in agricultural inputs: Incorporating a historical perspective, DT-SEHA http://hdl.handle.net/10234/141278
  12. 12.
    Le Noë, J., Billen, J. & Garnier, J. (2019) Carbon dioxide emission and soil sequestration for the French agro-food system: present and prospective scenarios. Frontiers in Sustainable Food Systems, vol. 3, https://doi.org/10.3389/fsufs.2019.00019
  13. 13.
    Zhou, X., Passow, F.H., Rudek, J., von Fisher, J.C., Hamburg, S.P. & Albertson, J.D. (2019) Estimation of methane emissions from the US ammonia fertilizer industry using a mobile sensing approach. Elementa Science of the Anthropocene, vol. 7, no. 1, http://doi.org/10.1525/elementa.358
  14. 14.
    Billen, G., Le Noë, J., & Garnier, J. (2018). Two contrasted future scenarios for the French agro-food system. Science of the Total Environment, vol. 637, p. 695-705, https://doi.org/10.1016/j.scitotenv.2018.05.043
  15. 15.
    Dorin, B. & Joly, P.B., 2019. Modelling world agriculture as a learning machine? From mainstream models to Agribiom 1.0. Land Use Policy, in press, https://doi.org/10.1016/j.landusepol.2018.09.028
  16. 16.
    Leip, A., Ledgard, S., Uwizeye, A., Palhares, J.C., Aller, M.F., Amon, B., Binder, M., Cordovil, C.M., De Camillis, C., Dong, H., Fusi, A., Helin, J., Hörtenhuber, S., Hristov, A.N., Koelsch, R., Liu, C., Masso, C., Nkongolo, N.V., Patra, A.K., Redding, M.R., Rufino, M.C., Sakrabni, R., Thoma, G., Vertes, F. & Wang, Y. (2019) The value of manure-Manure as co-product in life cycle assessment. Journal of Environmental Management, vol. 241, p.293-304, https://doi.org/10.1016/j.jenvman.2019.03.059